Abstract

There has been growing interest in the likelihood paradigm of statistics, where statistical evidence is represented by the likelihood function and its strength is measured by likelihood ratios. The available literature in this area has so far focused on parametric likelihood functions, though in some cases a parametric likelihood can be robustified. This focused discussion on parametric models, while insightful and productive, may have left the impression that the likelihood paradigm is best suited to parametric situations. This article discusses the use of empirical likelihood functions, a well-developed methodology in the frequentist paradigm, to interpret statistical evidence in nonparametric and semiparametric situations. A comparative review of literature shows that, while an empirical likelihood is not a true probability density, it has the essential properties, namely consistency and local asymptotic normality that unify and justify the various parametric likelihood methods for evidential analysis. Real examples are presented to illustrate and compare the empirical likelihood method and the parametric likelihood methods. These methods are also compared in terms of asymptotic efficiency by combining relevant results from different areas. It is seen that a parametric likelihood based on a correctly specified model is generally more efficient than an empirical likelihood for the same parameter. However, when the working model fails, a parametric likelihood either breaks down or, if a robust version exists, becomes less efficient than the corresponding empirical likelihood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call