Abstract
Introduction Given Chapters 4 and 6, the reader may be expecting another empirical likelihood (EL)-like functional or divergence measure to be introduced in this chapter. However, we do even more. We provide an entire family of likelihood functionals-divergence measures that includes the maximum empirical likelihood (MEL) and maximum empirical exponential likelihood (MEEL) formulations discussed in Chapters 4 and 6. We remind the reader that in Chapter 4 we started the pursuit of the solution to a stochastic inverse problem that was based on indirect noisy observations. In this context, we noted in Chapter 2 that when the functional form of the likelihood function is known, the maximum likelihood concept provides an appealing basis for estimation and inference. However, if sufficient information about the underlying data sampling process is not available to specify the functional form of the likelihood function, parametric maximum likelihood (ML) methods are fragile and lose their attractive optimal statistical characteristics. In econometrics, information about the underlying data sampling process is usually partial and incomplete. Consequently, estimation and inference over the past two decades has, as demonstrated in Chapter 3, proceeded under semiparametric formulations in the sense that the joint probability distribution of the data is unspecified, apart from a finite set of theoretical moment conditions or conditional moment restrictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.