Abstract

Abstract. Solutions collected from lysimeters of acid soils can show pH values close to or even above neutral. Laboratory experiments on an acid soil from Burundi were planned to test if denitrification or CO2 degassing might explain such a paradox. In the first experiment, soil profiles were reconstituted in columns and leached with 55 μm Ca(NO3)2 solutions at 30 °C and 4 °C. Two drainage regimes were applied: intermittent suction or no suction at the bottom of the columns. In the second experiment, pH values were measured in solutions drained from different horizons at 30 °C, before and after equilibration with ambient air. Sterilized soil was also tested in the same way. Results from experiment 1 showed that despite the accumulation of water in the bottom of soil profiles when no suction was applied, aeration still existed so that reduction reactions, namely denitrification, are not expected to affect greatly the percolate composition. Indeed nitrate concentration was similar in both drainage regimes and was close to the input value. The pH values in percolates were close to 7 at 30 °C and they dropped to about 5.5 when the columns were at 4 °C. In experiment 2, equilibration of percolates with ambient air resulted in pH increase which was greater for the top horizon (C‐rich) but negligible when the soil was first sterilized. These convergent results illustrate the very important effect of CO2 degassing on pH of drained solutions when microbial activity is stimulated at high temperatures, in C‐rich soil. This is of prime importance when interpreting results from lysimeter experiments. By chance, this study also showed that large quantities of nitrate can be produced in soil at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.