Abstract

Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip–surface force that are in-phase with the tip motion (FI) and quadrature to the motion (FQ). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that FI and FQ actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of FI and FQ from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components FI and FQ, providing deeper insight into the tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.

Highlights

  • Since its invention [1] atomic force microscopy (AFM) has developed into one of the most versatile techniques in surface science

  • We presented a physical interpretation of tip motion when described by a narrow-band frequency comb in Intermodulation atomic force microscopy (ImAFM)

  • We showed by separation of time scales that the time domain signal of a narrow-band frequency comb is completely characterized by a complex-valued envelope function and a rapidly oscillating term

Read more

Summary

Introduction

Since its invention [1] atomic force microscopy (AFM) has developed into one of the most versatile techniques in surface science. In ImAFM the measured frequency comb corresponds to a vertical motion z(t) of the tip, which undergoes rapid oscillations at frequency with slowly varying amplitude and phase, (20)

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.