Abstract
In recent years, numerous studies have pointed to the ability of artificial intelligence (AI) to generate and analyze expressions of natural language. However, the question of whether AI is capable of actually interpreting human language, rather than imitating its understanding, remains open. Metaphors, being an integral part of human language, as both a common figure of speech and the predominant cognitive mechanism of human reasoning, pose a considerable challenge to AI systems. Based on an overview of the existing studies findings in computational linguistics and related fields, the paper identifies a number of problems associated with the interpretation of non-literal expressions of language by large language models (LLM). It reveals that there is still no clear understanding of the methods for training language models to automatically recognize and interpret metaphors that would bring it closer to the level of human “interpretive competencies”. The purpose of the study is to identify possible reasons that hinder the understanding of figurative language by artificial systems and to outline possible directions for solving this problem. The study suggests that the main barriers to AI’s human-like interpretation of figurative natural language are the absence of a physical body, the inability to reason by analogy and make inferences based on common sense, the latter being both the result and the cognitive process in extracting and processing information. The author concludes that further improvement of the AI systems creative skills should be at the top of the research agenda in the coming years.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have