Abstract
Lung diseases lead to complications from obstructive diseases, and the COVID-19 pandemic has increased lung disease-related deaths. Medical practitioners use stethoscopes to diagnose lung disease. However, an artificial intelligence model capable of objective judgment is required since the experience and diagnosis of respiratory sounds differ. Therefore, in this study, we propose a lung disease classification model that uses an attention module and deep learning. Respiratory sounds were extracted using log-Mel spectrogram MFCC. Normal and five types of adventitious sounds were effectively classified by improving VGGish and adding a light attention connected module to which the efficient channel attention module (ECA-Net) was applied. The performance of the model was evaluated for accuracy, precision, sensitivity, specificity, f1-score, and balanced accuracy, which were 92.56%, 92.81%, 92.22%, 98.50%, 92.29%, and 95.4%, respectively. We confirmed high performance according to the attention effect. The classification causes of lung diseases were analyzed using gradient-weighted class activation mapping (Grad-CAM), and the performances of their models were compared using open lung sounds measured using a Littmann 3200 stethoscope. The experts’ opinions were also included. Our results will contribute to the early diagnosis and interpretation of diseases in patients with lung disease by utilizing algorithms in smart medical stethoscopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.