Abstract
The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Pefiormance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long- term brine releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanisq migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of T~ U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quantifi parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Pknt (WIPP) site in southeastern New Mexico. This report deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. All intact-core column transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AK). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `2U and `?Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers 24% and 24*Arn were performed, but no elution of either species was observed in any flow experiment to date, including experiments of many months' duration. In order to quanti~ retardation of the non-eluted species 24*Pu and 241Arn afler a period of brine flow, non-destructive and destructive analyses of an intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am is present very near the top (injection) surface of the core (possibly as a precipitate), and that the majority of the 241Pu is dispersed with a very high apparent retardation value. The 24]Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported for this actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and their chemical and transport properties are therefore identical to those of isotopes in the inventory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.