Abstract
Complex diseases, like diabetic kidney disease (DKD), often exhibit heterogeneity, challenging accurate risk prediction with machine learning. Traditional global models ignore patient differences, and subgroup learning lacks interpretability and predictive efficiency. This study introduces the Interpretable Subgroup Learning-based Modeling (iSLIM) framework to address these issues. iSLIM integrates expert knowledge with a tree-based recursive partitioning approach to identify DKD subgroups within an EHR dataset of 11,559 patients. It then constructs separate models for each subgroup, enhancing predictive accuracy while preserving interpretability. Five clinically relevant subgroups are identified, achieving an average sensitivity of 0.8074, outperforming a single global model by 0.1104. Post hoc analyses provide pathological and biological evidence supporting subgroup validity and potential DKD risk factors. The iSLIM surpasses traditional global model in predictive performance and subgroup-specific risk factor interpretation, enhancing the understanding of DKD's heterogeneous mechanisms and potentially increasing the adoption of machine learning models in clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.