Abstract
The integration of machine learning (ML) in marine engineering has been increasingly subjected to stringent regulatory scrutiny. While environmental regulations aim to reduce harmful emissions and energy consumption, there is also a growing demand for the interpretability of ML models to ensure their reliability and adherence to safety standards. This research highlights the need to develop models that are both transparent and comprehensible to domain experts and regulatory bodies. This paper underscores the importance of transparency in machine learning through a use case involving a VLGC ship two-stroke propulsion engine. By adhering to the CRISP-DM standard, we fostered close collaboration between marine engineers and machine learning experts to circumvent the common pitfalls of automated ML. The methodology included comprehensive data exploration, cleaning, and verification, followed by feature selection and training of linear regression and decision tree models that are not only transparent but also highly interpretable. The linear model achieved an RMSE of 23.16 and an MRAE of 14.7%, while the accuracy of decision trees ranged between 96.4% and 97.69%. This study demonstrates that machine learning models for predicting propulsion engine fuel consumption can be interpretable, adhering to regulatory requirements, while still achieving adequate predictive performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have