Abstract

Complex formation of sulfonate-containing aromatic poly- and copolyamides with copolymers of acrylonitrile with N,N-dimethyl-N,N-diallylammonium chloride and N,N-diethylaminoethyl methacrylate was studied in organic and aqueous-organic media. The values of conversion degree for interpolymer reactions were determined. At optimal conditions in the presence of poly-4,4'-(2-sodium sulfonate)diphenylaminoisophthalamide and poly-4,4'-(2-sodium sulfonate)diphenylaminoterephthalamide the degree of conversion was equal to ~0.80 and 0.78, respectively. The reduction of number of sulfonate containing units in the polymer chain to 10% leads to its decrease to ~0.18. It was shown that the nature and composition of the solvent affects the kinetics of interpolymer reactions due to the different ratio of reaggregation during the interacting of function groups in water medium with considerable force of hydrophobic interactions and in organic solvent where these forces dramatically reduce. The phase state and the composition of formed interpolyelectrolyte complexes depends on charge density along macromolecule chain of copolyamide and on the composition of the solvent used. The reduction of the number of sulfonate containing units in the macromolecule leads to polycation component increase in the complex. The formation of stoichiometric interpoly-electrolyte complexes takes place in the solvent with the same composition as that when the most significant unfolding of the polyanion chain was observed. The phase separation during the complex formation by the interpolymer reaction with copolyamide containing 5% of units with sulfonate groups or copolymer of acrylonitrile with N,N-diethylaminoethyl methacrylate is not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call