Abstract

Increases in the quantity of available data have allowed all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. Regression is a popular approach to solving approximation problems with high dimension; however, there are often advantages to interpolation. This paper presents a novel and insightful error bound for (piecewise) linear interpolation in arbitrary dimension and contrasts the performance of some interpolation techniques with popular regression techniques. Empirical results demonstrate the viability of interpolation for moderately high-dimensional approximation problems, and encourage broader application of interpolants to multivariate approximation in science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.