Abstract

Database-assisted design (DAD) is emerging as an important tool to design buildings for wind effects. However, there is a need for robust interpolation methods for pressure coefficients to extend the range of conditions beyond those in the aerodynamic database from wind tunnel experiments. An interpolation methodology, using artificial neural networks (ANN), was developed to include variable plan dimensions and roof slopes in the set of parameters considered in earlier interpolation studies. In addition to expanding the capabilities for interpolation, the new models improved predictions in the lee of the ridges for gable-roofed and low-rise buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.