Abstract

Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and \(\omega (x,y)=g(jx,y)\) is symplectic, then M is almost pseudo Kahler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.