Abstract

In the present work, a critical analysis of the most-commonly used analytical models and recently introduced ANN-based models was performed to evaluate their predictive accuracy within and outside the experimental interval used to generate them. The high-temperature deformation behavior of a medium carbon steel was studied over a wide range of strains, strain rates, and temperatures using hot compression tests on a Gleeble-3800. The experimental flow curves were modeled using the Johnson–Cook, Modified-Zerilli–Armstrong, Hansel–Spittel, Arrhenius, and PTM models, as well as an ANN model. The mean absolute relative error and root-mean-squared error values were used to quantify the predictive accuracy of the models analyzed. The results indicated that the Johnson–Cook and Modified-Zerilli–Armstrong models had a significant error, while the Hansel–Spittel, PTM, and Arrhenius models were able to predict the behavior of this alloy. The ANN model showed excellent agreement between the predicted and experimental flow curves, with an error of less than 0.62%. To validate the performance, the ability to interpolate and extrapolate the experimental data was also tested. The Hansel–Spittel, PTM, and Arrhenius models showed good interpolation and extrapolation capabilities. However, the ANN model was the most-powerful of all the models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.