Abstract

As a continuation of our efforts to develop efficient and accurate interpolating moving least-squares (IMLS) methods for generating potential energy surfaces, we carry out classical trajectories and compute kinetics properties on higher degree IMLS surfaces. In this study, we have investigated the choice of coordinate system, the range of points (i.e., the cutoff radius) used in fitting, and strategies for selections of data points and basis elements. We illustrate and test the method by applying it to hydrogen peroxide (HOOH). In particular, reaction rates for the O-O bond breaking in HOOH are calculated on fitted surfaces using the classical trajectory approach to test the accuracy of the IMLS method for providing potentials for dynamics calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.