Abstract

Aminoacyl-tRNA synthetases are an indispensable component of ribosomal protein translational machinery and Plasmodium Tyrosyl-tRNA synthetase (PfTyrRS) is a validated drug target. This manuscript illustrates the dynamic conformational landscape of PfTyrRS in the context of substrate binding. Molecular dynamics simulations of PfTyrRS in the presence and absence of ligand show conformational heterogeneity for both the protein and the bound ligand. Diverse conformations for the evolutionarily conserved ATP binding motif (KMSKS) have been observed in both apo- and holo PfTyrRS. Further, the presented attributes of the tyrosyl-adenylate conformational sub-states in situ along with their implications on the strength of intermolecular interactions would be a pertinent benchmark for molecular design studies. In addition, an analysis of the ligand hydration pattern foregrounds the structurally conserved water-mediated inter-molecular interactions. The quantitative assessment of the conformational landscape, based on the fluctuations of the distance between the ligand binding pockets, of apo-PfTyrRS and holo-PfTyrRS highlights the nature of diversity in conformational sampling for the two cases. Evidently, the holo-PfTyrRS adopts a rather compact conformation compared to the apo-PfTyrRS. An intriguing asymmetry in the dynamics of the two monomers is contextualized with the functional asymmetry of the symmetrically dimeric PfTyrRS. Importantly, the network of non-bonded contacts in the apo- and holo- simulated ensembles has been analyzed. The graph-theoretic analysis-based novel insights concerning the nature of information flow as a function of ligation state would prove valuable in understanding PfTyrRS functions. The results presented here contend that understanding allostery in PfTyrRS is essential to astutely design structure-based inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.