Abstract

The binary intermetallic materials, M_{3}Sn_{2} (M=3d transition metal) present a new class of strongly correlated systems that naturally allows for the interplay of magnetism and metallicity. Using first principles calculations we confirm that bulk Fe_{3}Sn_{2} is a ferromagnetic metal, and show that M=Ni and Cu are paramagnetic metals with nontrivial band structures. Focusing on Fe_{3}Sn_{2} to understand the effect of enhanced correlations in an experimentally relevant atomistically thin single kagome bilayer, our abinitio results show that dimensional confinement naturally exposes the flatness of band structure associated with the bilayer kagome geometry in a resultant ferromagnetic Chern metal. We use a multistage minimal modeling of the magnetic bands progressively closer to the Fermi energy. This effectively captures the physics of the Chern metal with a nonzero anomalous Hall response over a material relevant parameter regime along with a possible superconducting instability of the spin-polarized band resulting in a topological superconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.