Abstract

AbstractThe interaction of circularly polarized (CP) light with chiral matter at different scales opens several possibilities of light manipulation in photonic and electronic devices. Here it is shown that in a multilayer architecture, it is possible to take advantage of the polarization‐selective reflection of the nematic arrangement of cellulose nanocrystals and the strong intrinsic CP luminescence (CPL) of the various bands of chiral Eu complexes. In this way, both the intrinsic CPL and total emission of the complex are modified depending on the enantiomer applied and on the detection geometry. This concept may apply for polarization control in electronic and photonic devices and polarized optical cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.