Abstract
A model of localized classical electrons coupled to lattice degrees of freedom and, via the Coulomb interaction, to each other, has been studied to gain insight into the charge and orbital ordering observed in lightly doped manganese perovskites. Expressions are obtained for the minimum energy and ionic displacements caused by given hole and electron orbital configurations. The expressions are analyzed for several hole configurations, including that experimentally observed by Yamada et al. in La_{7/8}Sr_{1/8}MnO_3. We find that, although the preferred charge and orbital ordering depend sensitively on parameters, there are ranges of the parameters in which the experimentally observed hole configuration has the lowest energy. For these parameter values we also find that the energy differences between different hole configurations are on the order of the observed charge ordering transition temperature. The effects of additional strains are also studied. Some results for La_{1/2}Ca_{1/2}MnO_3 are presented, although our model may not adequately describe this material because the high temperature phase is metallic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.