Abstract

The low luminance efficiency, poor reliability and parasitic peaks have greatly limited the commercialization of deep ultraviolet (DUV) light-emitting diodes. Tasks of identifying the culprits of these deficits are of paramount importance but remains unaccomplished. We employ the full-range temperature (20 K -300 K) measurement on 275-nm DUV devices that subjected to a 15-hour current-stress aging. The results suggest that the primary culprit of fast luminous decay is the proliferation of non-radiative centers. The origins of two main parasitic peaks are identified. The 310-nm peak is considered to solely come from deep-level radiative centers (DLRCs) that only dwell in the active region. Whereas, the 400-nm peak is proven to be dual-sources. One is related to the DLRCs in the active region, which only can be observed at very low currents; the other emerging at higher currents are associated with similar kinds of DLRCs located in the p-region, which only are excited when electrons overflow. This new discovery also demonstrates that a thorough investigation on the interplay among carriers and various types of defects should be conducted on the basis of the measurement that is taken under a wide temperature range, as well as under a proper forward voltage. This is to let the quasi-Fermi level shift across deep defect levels, the band-edge, and to over-band, whereby these recombination sites are exposed to deficit, moderate and saturated electron environment so that their natures can be well tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call