Abstract

AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al<~30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call