Abstract

We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal-metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal-metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection. We show that these processes are relevant also far above the superconducting gap and that signatures of Coulomb blockade may reoccur at high bias while they are absent for small bias in the strong-coupling regime. Our experimental findings agree with simulations using a rate equation approach in combination with the full counting statistics of multiple Andreev reflection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.