Abstract
The morphofunctional relationship between the endocannabinoid system and GnRH activity in the regulation of reproduction has poorly been investigated in vertebrates. Due to the anatomical features of lower vertebrate brain, in the present paper, we chose the frog Rana esculenta (anuran amphibian) as a suitable model to better investigate such aspects of the reproductive physiology. By using double-labeling immunofluorescence aided with a laser-scanning confocal microscope, we found a subpopulation of the frog hypothalamic GnRH neurons endowed with CB1 cannabinoid receptors. By means of semiquantitative RT-PCR assay, we have shown that, during the annual sexual cycle, GnRH-I mRNA (formerly known as mammalian GnRH) and CB1 mRNA have opposite expression profiles in the brain. In particular, this occurs in telencephalon and diencephalon, the areas mainly involved in GnRH release and control of the reproduction. Furthermore, we found that the endocannabinoid anandamide is able to inhibit GnRH-I mRNA synthesis; buserelin (a GnRH agonist), in turn, inhibits the synthesis of GnRH-I mRNA and induces an increase of CB1 transcription. Our observations point out the occurrence of a morphofunctional anatomical basis to explain a reciprocal relationship between the endocannabinoid system and GnRH neuronal activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.