Abstract
The arginine-serine (RS)-rich domain of the SR protein ASF/SF2 is phosphorylated by SR protein kinases (SRPKs) and Clk/Sty kinases. However, the mode of phosphorylation by these kinases and their coordination in the biological regulation of ASF/SF2 is unknown. Here, we report the crystal structure of an active fragment of human SRPK1 bound to a peptide derived from an SR protein. This structure led us to identify a docking motif in ASF/SF2. We find that this docking motif restricts phosphorylation of ASF/SF2 by SRPK1 to the N-terminal part of the RS domain - a property essential for its assembly into nuclear speckles. We further show that Clk/Sty causes release of ASF/SF2 from speckles by phosphorylating the C-terminal part of its RS domain. These results suggest that the docking motif of ASF/SF2 is a key regulatory element for sequential phosphorylation by SRPK1 and Clk/Sty and, thus, is essential for its subcellular localization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have