Abstract

Abstract The presence of Fe aids in establishing the mechanical and physical properties of AlSi alloys and is also one of the main impurities leading to formation of β-Al5FeSi intermetallics. This study aims to understand the effect of fluid flow on the dendritic microstructure with intermetallics in Al-5/7/9 wt pct Si-0.2/0.5/1.0 wt pct Fe alloys that are directionally solidified under defined thermal and fluid flow conditions. We made extensive use of 3D X-ray tomography to obtain a better insight into the morphology and formation of the intermetallics. Three-dimensional (3-D) distribution of intermetallics presented here shows that the growth of large β-Al5FeSi due to forced flow occurs in the eutectic specimen center and together with an increase in the number density of β precipitates. The 3D reconstructions have verified the β shaped to be curved, bent with twining, branched, and to have imprints, holes, and propeller-shaped platelets. The 3D views showed that hole-shaped β arose from the lateral growth around α-Al dendrites. These views also confirmed the phenomenon of shortening of β as an effect of flow in the dendritic region, where β could be fragmented or completely remelted, and ultimately resulting in microstructures with shorter β-Al5FeSi and increases in number density. The analysis revealed an interaction between melt flow, 3D distribution, and the morphology of β-Al5FeSi. The growth of a large and complex group of β intermetallics can reduce the melt flow between dendrites and strengthen pore nucleation and eutectic colonies nucleation, leading to lower permeability of the mushy zone and increased porosity in the castings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.