Abstract

Iron oxide has been developed as either T1 or T2 magnetic resonance imaging (MRI) contrast agents by controlling the size and composition; however, the underlying mechanism of T1 and T2 contrasts in one iron oxide entity is still not well understood. Herein, we report that freestanding superparamagnetic magnetite nanoplates with (111) exposed facets have significant but interactional T1 and T2 contrast effects. We demonstrate that the main contribution of the T1 contrast of magnetic nanoplates is the chemical exchange on the iron-rich Fe3O4(111) surfaces, whereas the T2 relaxation is dominated by the intrinsic superparamagnetism of the nanoplates with an enhanced perturbation effect. We are able to regulate the balance of T1 and T2 contrasts by controlling structure and surface features, including morphology, exposed facets, and surface coating. This study provides an insightful understanding on the T1 and T2 contrast mechanisms, which is urgently needed to allow more sophisticated design of high-performance MRI contrast agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.