Abstract

Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interacti...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.