Abstract

In conventional hexagonal InGaAlN multiple-quantum-well (MQW) (h-) light-emitting diodes (LEDs), carrier leakage from QWs is the main source of internal quantum efficiency (IQE) degradation without contributing to the LED efficiency droop. Our analysis based on the newly developed Open Boundary Quantum LED Simulator indicates that radiative recombination is hampered by the poor electron–hole wavefunction overlap induced by strong internal polarization for which QW carriers mostly recombine via Auger scattering rather than by radiative processes. By contrast, in non-polar h-LEDs, the IQE peak doubles its value compared to conventional h-LEDs while quenching the efficiency droop by 70% at current density of 100 A/cm2. Those effects are further enhanced in cubic InGaAlN MQW (c-) LEDs for which the IQE peak increases by an additional 30%, and the efficiency droop is further reduced by 80% compared to non-polar h-LEDs, thanks to the larger optical transition matrix element and the strong electron–hole wavefunction overlap in c-LEDs. Overall, a c-LED with a low efficiency droop of 3% at 100 A/cm2 is anticipated, paving a clear pathway toward ultimate solid-state lighting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call