Abstract

In 1972, early August, a series of interplanetary shocks were observed in the heliosphere from 0.8 to 2.2 au. These shocks were attributed to a series of brilliant flares and plasma clouds since at that time coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) were unknown to the scientific community. This paper aims to reinterpret the interplanetary data in light of the current understanding about interplanetary transients and to track the evolution of the ICMEs, taking advantage of the alignment of Pioneers 9 and 10 spacecraft. For this purpose, we reanalyze in situ data from these two Pioneers and also from Heos, Prognoz 1 and 2, and Explorer 41 spacecraft searching for ICMEs and high-speed streams. Then we assemble the interplanetary transients and solar activity and analyze the propagation of the ejections through the heliosphere. The evolution of four ICMEs and a high-speed stream from a low-latitude coronal hole is followed using the multipoint in situ observations. The first three ICMEs show clear signatures of ICME–ICME interaction in the interplanetary medium, suggesting the first observations of an ICME which developed into an ICME-in-the-sheath. For a non-perturbed ICME event, we obtain the evolution parameter, ζ, related to the local expansion of ICMEs, getting similar values for Pioneer 9 (ζ = 0.80) and Pioneer 10 (ζ = 0.78). These results support previous findings of ζ being independent of the heliocentric distance and the magnetic field strength decreasing as r −2ζ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call