Abstract

The second-generation supercapacitor comprises the hybridized energy storage mechanism of Lithium-ion batteries and electrical double-layer capacitors, i.e, Lithium-ion capacitors (LICs). The electrospun SnO2 nanofibers are synthesized by a simple electrospinning technique and are directly used as anode material for LICs with activated carbon (AC) as a cathode. However, before the assembly, the battery-type electrode SnO2 is electrochemically pre-lithiated (LixSn + Li2O), and AC loading is balanced with respect to its half-cell performance. First, the SnO2 is tested in the half-cell assembly with a limited potential window of 0.005 to 1 V vs. Li to avoid the conversion reaction of Sn0 to SnOx. Also, the limited potential window allows only the reversible alloy/de-alloying process. Finally, the assembled LIC, AC/(LixSn + Li2O), displayed a maximum energy density of 185.88 Wh kg−1 with ultra-long cyclic durability of over 20,000 cycles. Further, the LIC is also exposed to various temperature conditions (–10, 0, 25, & 50 °C) to study the feasibility of using them in different environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.