Abstract

High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.