Abstract

Elemental Si has a high theoretical capacity and has attracted attention as an anode material for high energy density lithium-ion batteries. Rapid capacity fading is the main problem with Si-based electrodes; this is mainly because of a massive volume change in Si during lithiation-delithiation. Here, we report that combining an ionic-liquid electrolyte with a charge capacity limit of 1000 mA h g-1 significantly suppresses Si volume expansion, improving the cycle life. Phosphorus-doping of Si also enhances the suppression and increases the Li+ diffusion coefficient. In contrast, the Si layer expands significantly in an organic electrolyte even with the charge capacity limit and even in an ionic-liquid electrolyte without the limit. We demonstrated that the homogeneously distributed Si lithiation-delithiation, phase-transition control from the Si to Li-rich Li-Si alloy phases, formation of a surface film with structural and/or mechanical stability, and faster Li+ diffusion contribute to suppressing Si volume expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.