Abstract

ObjectiveTo compare the effects of using an Internet of things (IoT)-assisted tenodesis-induced-grip exoskeleton robot (TIGER) and task-specific motor training (TSMT) as home programs for the upper-limb (UL) functions of patients with chronic stroke to overturn conventional treatment modes for stroke rehabilitation. DesignA randomized 2-period crossover study. SettingA university hospital. ParticipantsEighteen chronic stroke patients were recruited and randomized to receive either the IoT-assisted TIGER first or TSMT first at the beginning of the experiment (N=18). InterventionIn addition to the standard hospital-based therapy, participants were allocated to receive a 30-minute home-based, self-administered program of either IoT-assisted TIGER first or TSMT first twice daily for 4 weeks, with the order of both treatments reversed after a 12-week washout period. The exercise mode of the TIGER training included continuous passive motion and the functional mode of gripping pegs. The TSMT involved various movement components of the wrist and hand. Main Outcome MeasuresThe outcome measures included the box and block test (BBT), the Fugl-Meyer assessment for upper extremity (FMA-UE), the motor activity log, the Semmes-Weinstein Monofilament test, the range of motion (ROM) of the wrist joint, and the modified Ashworth scale. ResultsSignificant treatment-by-time interaction effects emerged in the results for the BBT (F(1.31)=5.212 and P=.022), the FMA-UE (F(1.31)=6.807 and P=.042), and the ROM of the wrist extension (F(1.31)=8.618 and P=.009). The participants who trained at home with the IoT-assisted TIGER showed more improvement of their UL functions. ConclusionsThe IoT-assisted TIGER training has the potential for restoring the UL functions of stroke patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call