Abstract

Internet of Things (IoT) based Arrhythmia Classification is a cutting-edge algorithm that amalgamates the abilities of the IoT and advanced medical diagnosis to revolutionize the detection and classification of arrhythmias—irregular heartbeats that may indicate fundamental cardiovascular issues. This technique leverages IoT devices, namely connected health monitors and wearable sensors, to continuously gather electrocardiogram (ECG) information from individuals. This information, streamed in real-time, provides a great opportunity for timely and remote monitoring of cardiac health. Leveraging the abilities of deep learning and IoT, this technique provides an automated and more sophisticated means of classifying and detecting arrhythmias, improving the efficiency and accuracy of diagnoses. This article presents an Internet of Things Enabled Based Arrhythmia Classification using the Dandelion Optimization Algorithm with Ensemble Learning (AC-DOAEL) method. The presented AC-DOAEL technique utilizes IoT-based data collection with an ensemble learning-based classification process. For the arrhythmia detection and classification process, the AC-DOAEL technique follows an ensemble learning algorithm such as long short-term memory (LSTM), autoencoder (AE), and bidirectional LSTM (BiLSTM) models. To improve the recognition rate of the ensemble models, the AC-DOAEL technique uses DOA as a hyperparameter optimizer. The simulation outcomes of the AC-DOAEL method are well-studied on benchmark ECG data. The experimental result analysis inferred the greater performance of the AC-DOAEL algorithm with other techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call