Abstract
Best-estimate thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) has promoted, over the last twenty-nine years, some forty-eight international standard problems (ISPs). These ISPs were performed in different fields as in-vessel thermal-hydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermal-hydraulic behaviour. 80% of these ISPs were related to the working domain of principal working group no.2 on coolant system behaviour (PWG2) and were one of the major PWG2 activities for many years. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISPs is given in this paper based on a report prepared by a writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident are shortly summarized. The experiments in four integral test facilities, LOBI, SPES, BETHSY, ROSA IV/LSTF and the recorded data during a steam generator tube rupture transient in the DOEL-2 PWR (Belgium) were the basis of the five small break LOCA related ISP exercises, which deal with the phenomenon typical of small break LOCAs in Western design PWRs. Some lessons learned from these small break LOCA ISPs are identified in relation to code deficiencies and capabilities, progress in the code capabilities, possibility of scaling, and various additional aspects. ISPs are providing unique material and benefits for some safety-related issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.