Abstract
A jet engine noise suppressor particularly adapted for supersonic aircraft. The nozzle (10) has an internal wall surface (70) around a generally centrally positioned body (50) and an annular area (62) extending between the wall and the body. In this area there are separate gas and air flow ducts (64, 66) having entrance ends (82, 80) and exit ends (76, 78), the entrance ends of the gas ducts extending annularly around the body (50) to receive gas exhaust from the engine and the air ducts have entrance ends annularly outwardly of the gas ducts along the wall (70). There are openings (26) in a wall (14) upstream of the ducts to supply ambient air to the entrance ends (80) of the air ducts. There are doors (20) and actuators (24) operable to open and close the openings (26). The ducts are arranged to direct the flow patterns at the exit ends (76, 78) in a relationship inverted from that existing at the entrance ends (80, 82 ) so that the gas ducts (64) discharge annularly outwardly along shroud (100) and the air ducts (66) discharge annularly inwardly along the body (50). There is an annulus downstream of the ducts extending between the shroud (100) and the body (50) in which there are longitudinally directed flaps extending annularly around the body and within the shroud. The flaps (126) vary the flow path sizes of the gas exhaust and air ejected outwardly of the ducts according to various flight mode requirements of the engine. There is also a thrust reverser (102) in the shroud which is translatable from an inner position to an outer position, the flaps directing the gas flow through the thrust reverser for stopping the airplane on landing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have