Abstract

The engineering of a new monodisperse colloid with a sea urchin-like structure with a large complex internal structure is reported, in which silica surfaces are bridged by an aromatic organic cross-linker to serve as a nanocarrier host for drugs such as doxorubicin (DOX) against breast cancer cells. While dendritic fibrous nanosilica (DFNS) was employed and we do not observe a dendritic structure, these particles are referred to as sea urchin-like nanostructured silica (SNS). Since the structure of SNS consists of many silica fibrils protruding from the core, similar to the hairs of a sea urchin. For the aromatic structured cross-linker, bis(propyliminomethyl)benzene (b(PIM)B-S or silanated terephtaldehyde) were employed, which are prepared with terephtaldehyde and 3-aminopropyltriethoxy-silane (APTES) through a simple Schiff base reaction. b(PIM)B-S bridges were introduced into SNS under open vessel reflux conditions. SPS refers to the product obtained by incorporating the cross-linker b(PIM)B-S in ultra-small colloidal SNS particles. In-situ incorporation of DOX molecules resulted in SPS-DOX. The pH-responsive SPS nanocomposites were tested as biocompatible nanocarriers for controllable doxorubicin (DOX) delivery. We conclude that SPS is a unique colloid which has promising potential for technological applications such as advanced drug delivery systems, wastewater remediation and as a catalyst for green organic reactions in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.