Abstract

The neuropeptide Y (NPY) plays numerous biological roles that are mediated by a family of G-protein-coupled receptors. Among the latter, the NPY Y1 subtype receptor undergoes a rapid desensitization following agonist exposure. This desensitization was suggested to result from a rapid clathrin-dependent internalization of Y1 and its recycling at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE). Herein, to validate and quantitatively consolidate the mechanism of NPY internalization, we quantitatively investigated the NPY-induced internalization of the Y1 receptor by direct stochastic optical reconstruction microscopy (dSTORM), a super-resolution imaging technique that can resolve EE and SE, which are below the resolution limit of conventional optical microscopes. Using Cy5-labeled NPY, we could monitor with time the internalization and recycling of NPY on HEK293 cells stably expressing eGFP-labeled Y1 receptors. Furthermore, by discriminating the SE/EE from the larger RE by their sizes and monitoring these two populations as a function of time, we could firmly consolidate the kinetic model describing the internalization mechanism of the Y1 receptors as the basis for their rapid desensitization following agonist exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.