Abstract

Generalized averaged Gaussian quadrature rules associated with some measure, and truncated variants of these rules, can be used to estimate the error in Gaussian quadrature rules. However, the former quadrature rules may have nodes outside the interval of integration and, therefore, it may not be possible to apply them when the integrand is defined on the interval of integration only. This paper investigates whether generalized averaged Gaussian quadrature rules associated with modified Chebyshev measures of the second kind, and truncated variants of these rules, are internal, i.e. if all nodes of these quadrature rules are in the interval of integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.