Abstract

AbstractSince 1980, the Arctic surface has warmed four times faster than the global mean. Enhanced Arctic warming relative to the global average warming is referred to as Arctic Amplification (AA). While AA is a robust feature in climate change simulations, models rarely reproduce the observed magnitude of AA, leading to concerns that models may not accurately capture the response of the Arctic to greenhouse gas emissions. Here, we use CMIP6 data to train a machine learning algorithm to quantify the influence of internal variability in surface air temperature trends over both the Arctic and global domains. Application of this machine learning algorithm to observations reveals that internal variability increases the Arctic warming but slows global warming in recent decades, inflating AA since 1980 by 38% relative to the externally forced AA. Accounting for the role of internal variability reconciles the discrepancy between simulated and observed AA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.