Abstract
The hepatitis C virus possesses an alternative open reading frame overlapping the Core gene, whose products are referred to as Core+1 or alternative reading frame (ARF) or F protein(s). Extensive studies on genotype HCV-1a demonstrated that ribosomal frameshifting supports the synthesis of core+1 protein, when ten consecutive As are present within core codons 9–11 whereas, in the absence of this motif, expression of the core+1 ORF is mediated mainly by internal translation initiation. However, in HCV-1b, no Core+1 isoforms produced by internal translation initiation have been described. Using constructs which contain the Core/Core+1 342–770 region from previously described HCV-1b clinical isolates from liver biopsies, we provide evidence for the synthesis of Core+1 proteins by internal translation initiation in transiently transfected mammalian cells using nuclear or cytoplasmic expression systems. Site directed mutagenesis analyses revealed that (a) the synthesis of Core+1 proteins is independent from the polyprotein expression, as we observed an increase of Core+1 protein expression from constructs lacking the polyprotein translation initiator, (b) the main Core+1 product is expressed from AUG 85, similarly to the Core+1/S protein of HCV-1a, (c) synthesis of Core+1 isoforms is also mediated from GUG 58 or under certain conditions GUG 26 internal codons, albeit at lower efficiency. Finally, comparable to HCV-1a Core+1 proteins, the HCV-1b Core+1 products are negatively regulated by core expression and the proteaosomal pathway. The expression of Core+1 ORF from HCV-1b clinical isolates and the preservation of translation initiation mechanism that stimulates its expression encourage investigating the role of these proteins in HCV pathogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have