Abstract
Metal-matrix composites (MMC) are being developed for power electronic IGBT modules, where the heat generated by the high power densities has to be dissipated from the chips into a heat sink. As a means of increasing long term stability a base plate material is needed with a good thermal conductivity (TC) combined with a low coefficient of thermal expansion (CTE) matching the ceramic insulator. SiC particle reinforced aluminum (AlSiC) offers the high TC of a metal with the low CTE of a ceramic. Internal stresses are generated at the matrix-particle interfaces due to the CTE mismatch between the constituents of the MMC during changing temperatures. Neutron and synchrotron diffraction was performed to evaluate the micro stresses during thermal cycling. The changes in void volume fraction, caused by plastic matrix deformation, are visualized by synchrotron tomography. The silicon content in the matrix connecting the particles to a network of hybrid reinforcement contributes essentially to the long term stability by an interpenetrating composite architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.