Abstract

Internal-stress plasticity is a deformation mechanism where an externally applied stress biases internal mismatch stresses. We report here a novel method to induce internal-stress plasticity in titanium: a reversible change of chemical composition (at constant temperature) is produced by cyclic alloying/dealloying with hydrogen, rather than by thermal cycling (at constant composition) which induces the well-known phenomenon of transformation-mismatch plasticity in titanium. We demonstrate that chemical cycling with hydrogen, which induces internal stresses by both swelling mismatch and transformation mismatch, results in large, reproducible strain increments in the direction of the applied stress. We systematically explore different processing variables (applied stress, temperature, as well as hydrogen concentration, cycling rate and flow rate) and discuss our results in the light of previous studies on internal-stress plasticity induced by thermal cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.