Abstract

Thermal expansion measurements are reported for a number of as-cast Al-Si eutectic alloys including a Sr-modified alloy which gives nearly spherical Si particles. The measurements were obtained by heating and cooling over repeated temperature cycles between room temperature and 500°C. In general, lower expansivity values were measured on the cooling cycle as compared with the heating cycle, resulting in a net positive permanent deformation at room temperature. Analytical solutions are described for the thermal expansivity of a concentric-spheres model for a Si particle contained within an Al matrix. The effect of plastic flow in the Al is included. Overall, the predictions show reasonable agreement with the measured expansivities. The observed differences between heating and cooling are of the same order as that which is predicted. At high temperatures, the measured increase in expansivities is smaller than calculated. The latter effect is explained by the decrease in expansivity which results from an increasing solid solubility of silicon in aluminum with increasing temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call