Abstract

The role of magnesium silicide (Mg2Si) and silicon (Si) particles in the localized corrosion of aluminum (Al) alloys was investigated herein. Sub-micrometer-sized Mg2Si and Si particles were grown in the Al matrix of Al-Mg-Si and Al-Si alloys, respectively, and characterized by transmission electron microscopy (TEM). A quasi in situ TEM technique was used to study an identical location containing Mg2Si or Si particle in the Al matrix, prior to and following a period of immersion in 0.1 M NaCl at pH 6, 2, and 12. At pH 6 and 2, Mg2Si was initially “anodic,” preferentially dealloying via selective dissolution of Mg, resulting in the development of SiO-rich remnants that are electrochemically inert. The SiO-rich remnants at pH 2 physically detached from the Al matrix. Silicon particles were electrochemically inert at pH 6, while “cathodic” at pH 2, dissolving the Al matrix at their periphery. It was observed that copper (Cu) was redeposited on Si particles at pH 2. At pH 12, Mg2Si and Si were “cathodic” to the Al matrix. This study clarifies, and provides new insights into, the characteristics of Al alloy physical manifestation of corrosion associated with Mg2Si and Si at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.