Abstract

This is the second paper of a series of three investigating, by numerical means, the geometric and mechanical properties of spherical bead packings under isotropic stresses. We study the effects of varying the applied pressure P (from 1 or 10 kPa up to 100 MPa in the case of glass beads) on several types of configurations assembled by different procedures, as reported in the preceding paper [I. Agnolin and J.-N. Roux, Phys. Rev. E 76, 061302 (2007)]. As functions of P , we monitor changes in solid fraction Phi, coordination number z, proportion of rattlers (grains carrying no force) x_(0) , the distribution of normal forces, the level of friction mobilization, and the distribution of near neighbor distances. Assuming that the contact law does not involve material plasticity or damage, Phi is found to vary very nearly reversibly with P in an isotropic compression cycle, but all other quantities, due to the frictional hysteresis of contact forces, change irreversibly. In particular, initial low P states with high coordination numbers lose many contacts in a compression cycle and end up with values of z and x_(0) close to those of the most poorly coordinated initial configurations. Proportional load variations which do not entail notable configuration changes can therefore nevertheless significantly affect contact networks of granular packings in quasistatic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.