Abstract

The influence of deep cryogenic treatment (DCT) on the microstructure of a bainitic steel is investigated by means of internal friction and transmission electron microscopy (TEM). Two relaxation peaks (Pc1and Pc2) are observed during cooling and one relaxation peak (Ph) during heating from 100 to 320K. Peak Pc1may be related to dislocation pinning. Peak Phis attributed to dislocation-carbon atoms interaction. The decreasing of peak Phafter cycles deep cryogenic cooling indicates that soaking time under the deep cryogenic temperature is not contributed to the precipitation of carbides, while the cycles cryogenic treatment lead to more fine carbides precipitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.