Abstract

Cylindrical specimens of 2024 and 7075 Al alloy material were heat treated with a cold water quench to obtain high residual tensile stresses at the interior. Fatigue tests showed internal cracks growing in the shear mode. By drilling a hole along the centre line internal cracks were given access to air, which then produced tensile mode cracks. Prestraining of specimens eliminated residual stresses thus producing crack initiation at the outer surface with crack growth in the tensile mode. Cracking in the tensile mode was sensitive to mean stress, whereas cracking in the shear mode was not. The shear mode crack on a micro level appeared to be slip band cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.