Abstract

This study focuses on improving photocatalytic CO2 reduction reaction (CRR) activity and modulating product selectivity. An In4SnS8/Cs3Bi2Br9-X (ISS/CBB-X) heterojunction is prepared using novel lead-free Cs3Bi2Br9 perovskite quantum dot–modified In4SnS8, which shows considerable potential as photocatalysts for CRRs under visible light. The optimised ISS/CBB photocatalyst exhibits high activity and CO selectivity with a CO yield and selectivity of 9.55 μmol g−1 h−1 and 92.9%, respectively, 3.8 and 1.5 times higher than those of pristine ISS, respectively. Moreover, the step-scheme (S-scheme) mechanism can be fully confirmed via in situ irradiated X-ray photoelectron spectroscopy, in situ electron spin resonance, femtosecond time-resolved absorption spectroscopy and density functional theory calculations. Based on in situ diffuse reflectance spectra and theoretical investigations, the ISS/CBB shows a decreased energy barrier towards CO2 reduction to CO through an adsorbed ⁕COOH intermediate. This study contributes to the further understanding of fabricating efficient S-scheme-based photocatalysts for selective CRR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.