Abstract

Towards unexplored intermolecular n→π* interactions, presented herein are the synthesis, structure, self-assembly and function of a multicarbonyl-containing macrocycle calix[2]arene[2]barbiturate 1. X-ray single crystal diffraction reveals the presence of Cl⋅⋅⋅C=O interactions in CH2 Cl2 ⊂1 host-guest complex and multiple intermolecular C=O⋅⋅⋅C=O interactions between molecules 1 in crystalline state. The intermolecular C=O⋅⋅⋅C=O interactions as attractive driving force led to unprecedented self-assembly of nanotube with diameter around 1.4 nm and inner surface engineered by aromatic rings. SEM and TEM images of the self-assembly of 1 demonstrated temperature-dependent morphologies which allows the observation of spheres at 25 °C and rods at 0 °C, respectively. XRD analysis indicated consistent hexagonal patterns in the self-assembly and single crystal lattice, indicating the nanotubes driven by C=O⋅⋅⋅C=O interactions constitute the basic structural architectures of both aggregates. The nanoscopic tubes (pores) formed in the rodlike single crystal engendering the separation of moving dyes were preliminarily investigated by a single-crystal chromatography and crystal-packed column chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.